home
   operating principles
   two stroke engine
   Wankel engine
   diesel engines
   in line engines


engine operating principles
 

Energy.

   Energy is the force behind the movement of all things. Animals (including humans) use food as their energy source for life and movement. Mechanical or inanimate objects use fuel energy to perform work. What is energy? Let's review what you probably have already learned in school. The word ENERGY as defined in physics, is "the capacity for doing work and overcoming resistance." Unless it is doing work, energy is known as potential energy (stored energy). The fuel (usually gasoline) used to power reciprocating engines is potential energy up to the moment it is mixed with air (oxygen) and burned.

   When potential energy is released from its source and causes movement of an object, it becomes kinetic energy (active energy). Thus. the movement of the parts of a reciprocating engine is an example of the potential energy of the fuel having been changed to kinetic energy.

   Potential and kinetic are broad classifications of energy. Energy is also given several other titles depending on the form it is in at a given moment. That is, energy can be changed from one form to another, so various titles are used to describe the forms. As examples: Heat energy can be changed into mechanical energy; mechanical energy can be changed into electrical energy; and electrical energy can be changed into heat, mechanical, or light energy.

Boyle's and Charles' Laws.

   Boyle's law states that the volume of a gas varies inversely with the pressure on it (see figure 6-1 ). This means that any confined gas will double its pressure if its volume is decreased by one-half. If we have a cylinder in which ordinary air is present at 14.7 pounds per square inch (psi) and we rammed an airtight piston into the cylinder one-half the length of the cylinder, the pressure of the gas, or air, would double to 29.4 psi. Then, if we were to ram the piston an additional one-half of the remaining distance in the cylinder, the pressure would increase to 58.8 psi.

   What happens when the reverse is tried? Let's suppose that we begin with the piston in one-half the length of the cylinder. (The pressure within the cylinder is 14.7 psi.) If the piston were extracted quickly to the full length of the cylinder, what do you think would happen to the pressure within the cylinder? It would be reduced by one-half, to become 7.35 psi. We can say this another way. When the volume of a confined gas is doubled, its pressure is reduced by one-half.

   As a general summary of Boyle's law, you should remember that a decrease in volume causes an increase in pressure. An increase in volume causes a decrease in pressure.

   When the piston in a cylinder moves inward and outward, increasing and decreasing the pressure of a confined gas, what is happening to the temperature of the gas? Charles' law states, the pressure and temperature of a confined gas are directly proportional. Thus, when the piston in a cylinder moves inward and compresses the gas, the temperature of the gas increases. How much the temperature increases depends on how far the piston t ravels.

   While an aircraft engine is operating, these two laws are being applied. It is through the understanding of these and related laws of physics that engineers have been able to improve the efficiency of engines.

 

Don't see the animation? click here to download Macromedia Shockwave Player.

The cylinder is closed on one end (the cylinder head), and the piston fits snugly in the cylinder. The piston wall is grooved to accommodate rings which fit tightly against the cylinder wall and help seal the cylinder's open end so that gases cannot escape from the combustion chamber. The combustion chamber is the area between the top of the piston and the head of the cylinder when the piston is at its uppermost point of travel.

The up-and-down movement of the piston is converted to rotary motion to turn the propeller by the connecting rod and the crankshaft, just as in most automobiles. Note the crankshaft, connecting rod, and piston arrangement in Figure 6-3 and imagine how the movement of the piston is converted to the rotary motion of the crankshaft. Note particularly how the connecting rod is joined to the crankshaft in an offset manner.

The valves at the top of the cylinder open and close to let in a mixture of fuel and air and to let out, or exhaust, burned gases from the combustion chamber. The opening and closing of a valve are done by a cam geared to the crankshaft. This gearing arrangement ensures that the two valves open and close at the proper times.

 


The reciprocating engine is also known as an internal-combustion engine. This name is used because the fuel mixture is burned within the engine. To understand how a reciprocating engine works, we must first study its parts and the functions they perform.

The seven major parts are:

(1) The cylinders
(2) The pistons
(3) The connecting rods
(4) The crankshaft
(5) The valves
(6) The spark plugs
(7) A valve operating mechanism (cam).
Refer to the relative location of these parts in Figure 6-2 .

Engine Operation.

   The cylinder is closed on one end (the cylinder head), and the piston fits snugly in the cylinder. The piston wall is grooved to accommodate rings which fit tightly against the cylinder wall and help seal the cylinder's open end so that gases cannot escape from the combustion chamber. The combustion chamber is the area between the top of the piston and the head of the cylinder when the piston is at its uppermost point of travel.
   The up-and-down movement of the piston is converted to rotary motion to turn the propeller by the connecting rod and the crankshaft, just as in most automobiles. Note the crankshaft, connecting rod, and piston arrangement in Figure 6- and imagine how the movement of the piston is converted to the rotary motion of the crankshaft. Note particularly how the connecting rod is joined to the crankshaft in an offset manner.
   The valves at the top of the cylinder open and close to let in a mixture of fuel and air and to let out, or exhaust, burned gases from the combustion chamber. The opening and closing of a valve are done by a cam geared to the crankshaft. This gearing arrangement ensures that the two valves open and close at the proper times.
Now let's consider the movement of the piston (four strokes) and the five events of a cycle (see figure 6-3 ).

1. The Intake Stroke

   The cycle begins with the piston at top centre; as the crankshaft pulls the piston downward, a partial vacuum is created in the cylinder chamber. The cam arrangement has opened the intake valve, and the vacuum causes a mixture of fuel and air to be drawn into the cylinder.

2. & 3. Compression and Ignition Stroke

As the crankshaft drives the piston upward in the cylinder, the fuel and air mixture is compressed. The intake valve has closed, of course, as this upward stroke begins. As the compression stroke is completed and just before the piston reaches its top position, the compressed mixture is ignited by the spark plug.

4. Power Stroke

The very hot gases expand with tremendous force, driving the piston down and turning the crankshaft. The valves are closed during this stroke also.

5. Exhaust Stroke

On the second upward (or outward, according to the direction the unit is pointed) stroke, the exhaust valve is opened and the burned gases are forced out by the piston.
At the moment the piston completes the exhaust stroke, the cycle is started again by the intake stroke. Each piston within the engine must make four strokes to complete one cycle, and this complete cycle occurs hundreds of times per minute as the engine runs.

The overall principles of reciprocating-engine operation are easy to understand if you remember what happens with each stroke that the piston makes. For this reason, you may find the chart in Table 6-3 helpful.

Table 6-3

 

Direction of Movement

Event (what happens)

1.

Inward (Down)

Intake

2.

Outward (Up)

Compression and Ignition

3.

Inward (Down)

Power

4.

Outward (Up)

Exhaust

Reciprocating-Engine Horsepower.

Most persons are acquainted with the term horsepower as applied to automobile and aircraft reciprocating engines. The term was coined by James Watt, the inventor of the steam engine, who wished to evaluate the power output of his steam engine. Watt hitched a horse to an apparatus and determined that the horse could lift 550 pounds one foot in one second. Thus, one horsepower became the power to lift 550 pounds one foot per second, or 33,000 foot-pounds per minute (550 x 60).


If an aircraft reciprocating engine is rated at 150 horsepower, it means the engine is capable of producing this much power. However, the engine has to be running at a certain speed before that much power is produced. The same is true for all other types of reciprocating engines.